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Transmission Modes in a Braided Coaxial

Cable and Coupling to

a Tunnel Environment
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Abstract—Radio frequency transmission in a semicircular tunnel con-
taining a braided coaxial cable is considered. The general formulation
accounts for both the ohmic losses in the tunnel wall and a thin lossy film
layer on the outer surface of the dielectric jacket of the cable. Using a
quasi-static approximation, it is found that the propagation constants of
the low-frequency transmission line modes are obtained through the solu-
tion of a cubic equation. However, for the special case when the conductiv-
ity thickness product of the lossy film layer vanishes, this cubic equation
reduces to a quadratic. The spatially dispersive form of the braid transfer
impedance is also accounted for. It is shown that the quasistatic theory is
well justified for frequencies as high as 100 MHz for typical tunnel
geometries. Finally, special characteristic impedances are derived for the
various modes of the equivalent multiconductor transmission line.

I. INTRODUCTION

A COAXIAL CABLE that allows continuous leakage
through its outer sheath can be exploited for con-
tinuous-access guided communications [1]. The environ-
ment, of course, plays an important role whether it be an
adjacent roadway, railway right-of-way, or tunnel. A
key aspect of such systems is the coupling (intentional
or nonintentional) between the transmission modes within
the cable and the transmission mode(s) in the external
region, Before an optimum communication system can be
designed to utilize these coupled modes, a better under-
standing of the propagation mechanisms is needed.

In this paper, we consider specifically a semicircular
tunnel model with a coaxial cable whose sheath is char-
acterized by a transfer impedance. We also allow for the
presence of a lossy film on the outer surface of the
concentric dielectric jacket. For applications in mine en-
vironments such a lossy layer can represent the effect of a
thin conducting fluid (i.e., saline water) or conductive
dust. Of course, the ohmic losses in the curved tunnel
walls are also included.

The main objective is to obtain specific results for the
attenuation rates of the dominant transmission modes and
to provide convenient definitions for the corresponding
characteristic impedances. We also demonstrate the valid-
ity of the quasi-static formulation of the problem by
making a comparison with calculations based on a more
general (and more complicated) mode equation.
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Fig. 1. Cross-section of semicircular tunnel containing coaxial cable (not
to scale).
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Fig. 2. The braided coaxial cable.

II. FORMULATION

The model assumed is described in terms of a cylindri-
cal coordinate system (p,¢,z) and is shown in Fig. 1. The
tunnel wall is located at p=a, for 0<¢<m, and the
assumed perfectly conducting tunnel floor is located at
¢=0and ¢ =7 for 0<p < co. The region defined by p>q,
and 0<¢ <7 is a homogeneous medium with conductiv-
ity o, and permittivity e,. The coaxial cable with outside
radius ¢ is centered at p=p, and ¢=¢, The region
defined by p<a, 0<¢ <, and p’>c¢, where p’ is the
radial component of a cylindrical coordinate system
(o', ¢',z) centered at (pg, ¢y), is described by the free space
permittivity and permeability €, and p,, respectively. The
geometry of the coaxial cable is shown in Fig. 2. The
inner conductor has radius ¢ and high but finite conduc-
tivity o,,. The surrounding insulation of radius b is a
lossless dielectric with permittivity e. The braided sheath
located at p’=b is characterized by a surface transfer
impedance Z;. The outer dielectric coating has radius ¢
and permittivity €.. We also allow for the possibility that a
thin lossy film is located at p’=c¢ which is characterized
by a transfer impedance Z,. We assume that the fields of
each mode of this structure vary as exp (—I'z + iwt) where
w is the angular frequency, and T is the complex propaga-
tion constant for the particular mode.
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In a previous paper, Hill and Wait [2] obtained a modal
solution for the similar problem of a single conductor
trolley wire in a semicircular tunnel. This solution is
general for any thin wire or cable that can be char-
acterized by a series impedance. Their mode equation is
given here in a more convenient form for our purpose:
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0

(z@+2)=0 (1)

where
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v =yO—T2, Mo={ 1o/ €) /2= 1207
where Z (T') is an effective impedance of the cable that we

define below. The factors S and Z, account for the
presence of the tunnel walls and are given by
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Note that S represents the reflected field from perfectly
conducting cylindrical walls and thus Z, accounts for the
ohmic losses due to the finite conductivity of the tunnel
walls.

Previously, Wait and Hill [3] derived an effective series
impedance Z(I') for a braided coaxial cable. In general,
the resulting expression for Z(I') is quite complicated.
However, they show that, if some quasi-static approxima-
tions are invoked, Z(I') can be expressed approximately

by the simpler form where
ZL (z,+2,)
2= +Z.+Z,
T(Z +Z)

S 4
b Z+Z2'+2, )
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Fig. 3. The equivalent network which yields the effective series imped-
ance of the cable in the quasi-static approximation.

NoYo Io(Ywa)

2 .
= Yo =i, 1w
2’/7(1'}’w Il(Ywa) 0
=—(k*+T%)a"  k*=cwuge
Z=—(kR+T)e,  k2=wuee,

= [27rc(¢7d)}_1

o' =(2mive) 'In(b/a) and a,=(27iwe,)” 'In(c/b).
Here (od) is the conductivity-thickness product of the
thin lossy layer that may be present.

The equivalent circuit for Z (T') is the network shown in
Fig. 3. The general spatially dispersive form of the sheath
transfer impedance Z, can be employed here. An ap-
proximate I-dependent form [4],[5] appropriate for the
present analysis is

Zr=Zy+a,I?
where
a,=2Zy(k*+k2) ' cosy

and Z,=iwL where L is the static sheath transfer induc-
tance, and iy is the braid weave angle. Note that ¢,
accounts for the spatial dispersion of the sheath transfer
impedance.

The proper mode equation for our problem is obtained
by using (4) in (1). Normally, the numerical solution for
the complex propagation constants I' for the various
modes of the structure are obtained by employing an
iterative procedure for locating complex roots [3], [5].
However, here we take a different approach and we use
an iterative solution of (1) only for purposes of compari-
son.

1.

Solution of (1) for the modal propagation constants can
be simplified if some quasi-static approximations are in-
voked. Specifically, we assume that |y,/y,/*>1 and that
|vag|<1. In fact, using a previous result of Wait [6] and
small argument approximations for the modified Bessel
functions, we can represent (2) and (3) by

Quasi-Static Mope EQuATION

o0
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Note that both S and Z, are independent of I' with this
approximation, If we now use

< a’ 1
> —-cosnx= = 51n[1—2acosx+a2],
n=1

given by Wheelon [7] in (5), we find that (1) becomes
v’InR+N(Z()+2,)=0

fora?<1

(M
where

R=2pysin¢oc ~'(1—r)(1—2rcosdy+ rz)_l/2

and

N=2mYo/ N0

After considerable algebraic manipulation, (7) becomes
a cubic equation of the form

a,(T?)’ + az(I‘z)2 +a,(T?) + ay=0
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Now (8) is a cubic equation and it has three roots which
can be solved for algebraically. Two of these roots can be
identified as the propagation constants of the well-known
monofilar and bifilar modes. But, in addition, there is a
third mode which we will refer to as the jacket mode since
it is found that in this mode, the current and return
current flows primarily in the braided sheath and the lossy
film layer, respectively, and that the other currents are
negligible. Examination of (9) reveals that in the absence
of the outer lossy film (Z,—o0), a; vanishes, and (8)
reduces to a quadratic equation in I'2, Consequently, there
are now only two solutions. As one would expect, the
jacket mode has disappeared, leaving only the monofilar
and bifilar modes.

These results are not unexpected. In the general case,
we have four axial conductors (the tunnel wall and floor,
the cable’s inner conductor, the braided sheath, and the
lossy film layer). Thus, at sufficiently low frequencies,
there will be three TEM modes [8]. But, of course, in the
absence of the lossy film, there remain only three conduc-
tors and thus only two TEM modes would exist in this
low frequency limit. When ohmic losses in these conduc-
tors are considered, we still expect three (or two, if 6d=0)
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dominant modes provided the tunnel cross section is small
compared with the free space wavelength A,,.

IV. CHARACTERISTIC IMPEDANCES FOR
MULTICONDUCTOR TRANSMISSION LINE

Because the dominant low-frequency modes of this
system behave like TEM transmission-line modes, it is
useful to treat the problem as a multiconductor transmis-
sion line using transmission-line concepts. Such an ap-
proach proves useful, for example, in considering the
mode conversion problem resulting from the presence of
axial nonuniformities in the cable or tunnel. Thus we need
to derive the characteristic impedance of each line for
each quasi-TEM mode. Specifically, we define

Vi Vs V.

= _I‘z T ere—— .
I e

K,

2 s

, , 13
Le™ T Le ™ (1)

as the impedance associated with the lossy film, the
braided sheath, and inner conductor, respectively. The
voltages V,, V,, and V; are defined by

pg—C
VL=—f0° E, (¢=o)dp
C
V.=V, + | E dp
L -/I; o P

(14)

and are the voltages of the lossy film, the braid, and the
inner conductor, respectively, with reference to the tunnel
floor. Similarly, I;, I, and I, are the currents in each
conductor (see Fig. 3).

It is not difficult to show that within the quasi-static
approximation, E, can be determined from

E,=3%U/3pdz=—TaU/dp

where U has the form
- " m
Mooy I P _l_(ﬂee)
27y, P m=1 ™M\ a3

'[Cosm(¢_¢o)_cosm(¢+¢o)]} (16)

b
Vi=Vo+ [ Eydpf
a

(15)

U

and
og = [03+0?~2pp, cos (6—og) ]/
o5 = [ P&+ p*—20p, cos (¢+do) '/
1[=IL+IS+Ii'

Similarly, we find that the radial electric field within the
cable using these quasi-static approximations is given by

I‘Iie—rz b
2iwep’’ a<p<

Epr FIbe_rz (17)
2miwe,p’’ b<p'<c

where I,=1I+ 1. Combining (13)-(17) and using the



SEIDEL AND WAIT: TRANSMISSION MODES IN COAXIAL CABLE

summation form used earlier, we obtain

l+p+
KL=( ? q)rlnR

q N
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K=T + a, 18
-r| (L R (2 (19)
and
_ InR ’
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where the current ratios p and ¢ are defined by
I, Z/()+Z
p=p = (19)
L zZ;I)
and
_I Z,(I)+Z.(I)
=7 =(+p) =g

The characteristic impedances defined by (18) are de-
pendent upon I' and consequently they assume different
values for each mode. Thus we have K, K, and KV
corresponding to the propagation constant of each mode
(T) for j=1,2,3. In the special case when there is no lossy
film (ed=0), I, vanishes, and we consider only the two
characteristic impedances K, and K for j=1,2.

V. SoME NUMERICAL RESULTS

We now present some examples of numerical results for
typical configurations of the geometry shown in Figs. 1
and 2. In all examples that follow, we consider a tunnel
with radius g,=2m and rock conductivity and permittiv-
ity of 6,=10"? mhos/m and ¢, =10¢,, respectively. The
dimensions of the cable are as follows: a=1.5 mm, =10
mm, and ¢=11.5 mm. The permittivities of the cable
insulation and jacket are given by e=2.5¢;, and ¢, =3.0¢,
which are typical values. Finally, in all cases, the cable is
located at ¢,=45°, and the cable’s braid is woven at the
angle ¢ =45°,

In order to ascertain the accuracy of the quasi-static
mode equation (7), we first consider a comparison of
results computed using this approximation to results com-
puted from (1) directly using iterative techniques. Fig. 4
compares the attenuation rates of the monofilar mode
over the frequency range 0.2 to 100 MHz for various
values of the cable’s radial position p,. (Attenuation rate
in dB/km =8686. Re (I').) Here we take the braid transfer
inductance L, to be 40 nH/m which corresponds to the
FONT cable [9], 6,=5.7x10" mhos/m, and od=0. A
similar comparison for the bifilar mode shows the two
solutions to be virtually indistinguishable over this range
of frequencies. In addition, if a nonzero od is introduced,
a comparison of attenuation rate of the jacket mode also
shows the two solutions to be virtually the same. These
comparisons clearly demonstrate the utility of the quasi-
static mode equation for typical tunnel parameters at
radio frequencies. The remaining examples given here
have been computed solely using the quasi-static ap-
proximation that is much more economic.
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ATTENUATION RATE (dB/km)

FREQUENCY (MHz)
Fig. 4. Attenuation rate of the monofilar mode versus frequency for

various valuses of (py/ay). With quasi-static approximation:
Without quasi-static approximation:------ .

In our next example, we again consider the case when
L,=40 nH/m but allow p,, o,,, and od to assume various
values. These results are shown in Fig. 5(a) and (b). It is
found that the monofilar mode is essentially independent
of the inner conductor’s conductivity (o,) whereas the
bifilar mode is essentially independent of the cable posi-
tion within the tunnel. This is in agreement with similar
results obtained for a coaxial cable in a circular tunnel [3].
It is interesting to note, however, that the attenuation
rates for the monofilar mode (Fig. 5(a)) are significantly
lower than those given [3] for similar parameters in a
circular tunnel. This is not unexpected since, in the semi-
circular tunnel, a portion of the return current for the
monofilar mode flows in the perfectly conducting tunnel
floor and thus suffers less attenuation. On the other hand,
there is virtually no difference between the bifilar modes,
which are relatively insensitive to the environment outside
the cable.

Now we turn our attention to the jacket mode. Fig. 6
shows the attenuation rate of this mode as a function of
frequency for various values of L, and od. The most
immediate observation to be made is that the attenuation
rate for this mode is orders of magnitude higher than that
of the other two modes. It is also observed that the
attenuation is approximately proportional to (w/od)"/2.

Another quantity of interest is the normalized phase
defined by Im (I')/k, which is inversely proportional to
the phase velocity with which the mode propagates along
the tunnel. Some values of the normalized phase are given
in Table I for the monofilar and bifilar modes. Here
Ly=2nH/m, ¢,=5.7X 10" mhos/m, and 6d=0. We note
that for the monofilar mode, the normalized phase is
slightly larger than unity when the cable-tunnel wall
separation is large, but increases rapidly as the cable
approaches the tunnel wall. On the other hand, the nor-
malized phase of the bifilar mode is essentially indepen-
dent of this separation and is slightly greater than k/k,=
(e/€p)'/?=1.581. This suggests the interesting possibility
of adjusting the dielectric constant of the cable insulation
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Fig. 5. Attenuation rate versus frequency for (a) monofilar mode,
(b) bifilar mode. od=0: . 0d=10"3mhos:— - —. od=10"2
mhos: . 0d=10"" mhos:------ .
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and the cable—tunnel wall separation such that the two
modes will propagate with the same phase velocity.

Finally, we consider the normalized phase for the jacket
mode as given in Table II for three values of od. Here
L,=2 nH/m, and the values given are essentially inde-
pendent of the other parameters. We see that, for typical
values of the conductivity—thickness product of the lossy
film, the normalized phase is much larger than one, and
consequently, the mode propagates very slowly. It should
be pointed out that, like this mode’s attenuation rate, the
phase is essentially proportional to (w/od)/2.

VL

We have obtained a remarkably simple description of
the dominant transmission modes for a leaky coaxial
cable located in a uniform straight tunnel with a semicir-
cular cross section. The formulation is facilitated by the
assumption that the floor of the tunnel, including the
effect of any metallic rails, is represented adequately by a

CONCLUDING REMARKS
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Fig. 6. Attenuation rate of jacket mode versus frequency for various

values of od. L;=40 nH/m: . Ly=2nH/m:------ .
TABLE 1
NoORMALIZED PHASE Im (T')/ kg
Monofilar Bifi1lar
B e
£ O-o = .5 pvo = .9 -2 98 o _
a a a a
o] [¢] o G
.2 1.058 1.251 1.685 1.604
.5 1.057 1.248 1.680 1.596
1.0 1.056 1. 244 1.674 1.593
2.0 1.055 1.238 1.665 1.590
5.0 1.051 1.225 1. 644 1.587
10.0 1.047 1.208 1.617 1.586
20.0 1.040 1.176 1.566 1.585
50.0 1.030 1.103 1.444 1.585
100,0 1.027 1.054 1.332 1.584
TABLE I1
NoRMALIZED PHasE Im (I)/ k¢
Jacket Mode
£ od = 1073 od = 1072 od = 1070
.2 759.7 240.2 75.98
.5 480.5 151.9 48.06
1.0 339.8 167.4 34.00
2.0 240.2 75.98 24.06
5.0 151.9 48.06 15.25
10.0 107.4 34.00 10.82
20.0 75.98 24.06 7.699
50.0 48.06 15.25 4,967
100.0 34.00 10.82 3.630

perfectly conducting ground plane. This allows us to de-
fine characteristic impedances of the transmission modes
in a meaningful fashion. In a subsequent study, we shall
consider the application of these results to the case where
the cable and/or the tunnel environment undergoes a
lateral variation such as an abrupt modification of the
effective series or shunt impedance.
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Electromagnetic Transmission Through a Filled
Slit in a Conducting Plane of Finite

Thickness,

TE Case

DAVID T. AUCKLAND, STUDENT MEMBER, IEEE, AND ROGER F. HARRINGTON, FELLOW, IEEE

Abstract—A solution is developed for computing the transmission char-
acteristics of a slit in a conducting screen of finite thickness placed
between two different media. The slit may be filled with lossy material
while the two regions on either side of the screen are assumed lossless. A
magnetic line source excitation is used (TE case) which is parallel to the
axis of the slit. The equivalence principle is invoked to replace the two slit
faces by equivalent magnetic current sheets on perfect electric conductors.
Two coupled integral equations containing the magnetic currents as un-
knowns are then obtained and solved for by the method of moments.
Pulses are used for the expansion and testing functions. Quantities com-
puted are equivalent magnetic currents, the transmission coefficient, the
gain pattern, and the normalized far field pattern.

I. INTRODUCTION

HE PROBLEM of diffraction of plane waves through

a slit in a perfect electric conductor of finite thickness
has been studied by several investigators [1]H5]. The most
extensive investigation was that of Lehman [1], who used
the analytic properties of finite Fourier transforms. The
solution of Kashyap and Hamid [2] used a Wiener—Hopf
and generalized matrix technique. Both of these solutions
were done for the TM case (incident electric field parallel
to slit axis). The solutions of Hongo [3] and of Neerhoff
and Mur [4], were obtained by a numerical solution of
coupled integral equations and were done for the TE case.
A similar solution for the TM case was obtained by
Wirgin [5]. In this paper, we use the method of moments
to solve coupled integral equations similar in form to
those derived in [4].
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This paper utilizes the generalized network formulation
of coupling through apertures developed in [6] and [7] and
extends these results to three regions coupled by two
apertures. To accomplish this the equivalence principle is
used to replace both faces of the slit by perfect conduc-
tors, each of which carry magnetic current sheets on both
sides. The original problem is now broken up into three
regions which are coupled by the postulated magnetic
current sheets. The two half-space regions are loss free
with arbitrary p and € and the medium in the slit is
assumed lossy with arbitrary complex g and e.

Continuity of the tangential magnetic field is used to
derive two coupled operator equations involving the
equivalent magnetic currents as unknowns. These equa-
tions are put into matrix form using the method of mo-
ments, and solved by using standard matrix methods. The
result can be interpreted in terms of a combination of
“admittance matrices” computed separately for each re-
gion. This gives rise to a network interpretation of the
problem which treats the unknown magnetic currents as
port voltages and the excitation as port currents.

II. PrOBLEM FORMULATION

The original problem configuration is shown in Fig. 1.
It consists of a perfect electric conductor of thickness d
separating two regions a and ¢ which may have different
electrical properties. Coupling between the two regions
occurs through a slit of width w filled with an arbitrarily
lossy medium. The conductor is infinite in the z and y
directions. The problem consists of three regions sep-
arated by two boundaries (the slit faces). Using the equiv-
alence principle, the three regions can be separated by
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