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Transmission Modes in a Braided Coaxial
Cable and Coupling to a Tunnel Environment

DAVID B. SEIDEL, MEMBER, IEEE, AND JAMES R. WAIT, FELLOW, IEEE

Abstract—Radio frequency transmission in a semicircular tunnel con-

taining a braided coaxial cable is considered. The generaf formulation

accounts for both the obndc losses in the tunnel waff and a thin lussy film
layer on the outer surface of the dielectric jacket of the cable. Using a

quasi-static approximation, it is found that the propagation constants of

the low-frequency transmission fine modes are obtained through the SOhr-

tion of a cubic equation. However, for the speciaf case when the conductiv-

ity thickness product of the Iossy film layer vanishes, this cubic equation
reduces to a quadratic. The spatially dispersive form of the braid transfer
impedaoce is aksn accounted for. It is shown that the quasistatic theory is

well justified for frequencies as high as 100 MHz for typieaf tmmel
geometries. Firrafly, speeial characteristic impedances are derived for the
various modes of the equivalent mrdticondsretor transmission fine.

I. INTRODUCTION

A COAXIAL CABLE that allows continuous leakage

through its outer sheath can be exploited for con-

tinuous-access guided communications [1]. The environ-

ment, of course, plays an important role whether it be an

adjacent roadway, railway right-of-way, or tunnel. A

key aspect of such systems is the coupling (intentional

or nonintentional) between the transmission modes within

the cable and the transmission mode(s) in the external

region, Before an optimum communication system can be

designed to utilize these coupled modes, a better under-

standing of the propagation mechanisms is needed.

In this paper, we consider specifically a semicircular

tunnel model with a coaxial cable whose sheath is char-

acterized by a transfer impedance. We also allow for the

presence of a lossy film on the outer surface of the

concentric dielectric jacket. For applications in mine en-

vironments such a lossy layer can represent the effect of a

thin conducting fluid (i.e., saline water) or conductive

dust. Of course, the ohmic losses in the curved tunnel

walls are also included.

The main objective is to obtain specific results for the

attenuation rates of the dominant transmission modes and

to provide convenient definitions for the corresponding
characteristic impedances. We also demonstrate the valid-

ity of the quasi-static formulation of the problem by

making a comparison with calculations based on a more

general (and more complicated) mode equation.
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Fig. 1. Cross-section of semicircular tunnel containing coaxial cable (not
to scale).
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Fig. 2. The braided coaxial cable.

II. FORMULATION

The model assumed is described in terms of a cylindri-

cal coordinate system (p, ~, z) and is shown in Fig. 1. The

tunnel wall is located at p= aO for O< S#J< T, and the

assumed perfectly conducting tunnel floor is located at

$=0 and $=r for O<p<co. The region defined byp>ao

and 0< @< r is a homogeneous medium with conductiv-

ityy u, and permittivity E,. The coaxial cable with outside

radius c is centered at p = pO and @=+.. The region

defined by p < ao, 0< rp< r, and p’> c, where p’ is the

radial component of a cylindrical coordinate system

(P’, @’,z) centered at (PO,+.), is described by the free space
permittivity and permeability COand pO, respectively. The

geometry of the coaxial cable is shown in Fig. 2. The

inner conductor has radius a and high but finite conduc-

tivity OW. The surrounding insulation of radius b is a

lossless dielectric with permittivity c. The braided sheath
located at p’= b is characterized by a surface transfer

impedance 2P The outer dielectric coating has radius c

and permittivity eC.We also allow for the possibility that a

thin lossy film is located at p’= c which is characterized

by a transfer impedance Z~. We assume that the fields of

each mode of this structure vary as exp ( – rz + iul) where

u is the angular frequency, and r is the complex propaga-

tion constant for the particular mode.
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In a previous paper, Hill and Wait [2] obtained a modal

solution for the similar problem of a single conductor

trolley wire in a semicircular tunnel. This solution is

general for any thin wire or cable that can be char- ‘;=’
acterized by a series impedance. Their mode equation is Fig, 3. ne equivalent network which yields the effective series imped-

given here in a more convenient form for our purpose: ante of the cable in the quasi-static approximation.

Ko(s)c)– Ko(t)pd)– s+- ~(z(r)+ze)=o (1) ‘r?oYo ~o(ywa)_—
‘i – 277ayw 1, (ywa)

Yit = W-w

where
z’= –(kz+rz)d k2 = ti2poc

Y;= – EOPO@2=– (25T/~O)2=– & Pd= Zposin@o
Zc = –(k:+rylc k:= ti2poec

02= y:– r2, 7to=(l%/%3)’’2= 120$7

where Z (17) is an effective impedance of the cable that we zL=[277c(ud)]-’

define below. The factors S and Z= account for the

presence of the tunnel walls and are given by

m Km (vao)
S=2 ~ ~m(WOL (~(Po+ c)) [ 1 – c@27@o]

~=1 Zm(vao)

(2)

and

“Im (WrJm (I&+ c)) [ 1 – cos2n@~] (3)

where

() K; (uao)
Ym= ~

Upo@ Km (uao)

(in2r/ao)2(0-2- U-2)2
(3mqo==

[(yo/o)L(oao)/~m(oao)]+ zm/qo

i(+o K; (Z4ao)()Zm=– ~
Km (uao)

Y:=‘Wpo(ue+ itid U = (Y% r2)1’2.
Note that S represents the reflected field from perfectly

conducting cylindrical walls and thus Z, accounts for the

ohmic losses due to the finite conductivity of the tunnel

walls.

Previously, Wait and Hill [3] derived an effective series

impedance Z(r) for a braided coaxial cable. In general,

the resulting expression for Z(n) is quite complicated.

However, they show that, if some quasi-static approxima-

tions are invoked, Z(r) can be expressed approximately

by the simpler form where

ZL(ZC + z~)
z(r)=—

Z=+zc+zb

Z,(.z’+zi)
Zb =

ZT+-Z’+ZZ

a’= (277iUE)- 1ln(b/a) and ac = (2miL@ -1 ln(c/b).

Here (ud) is the conductivity-thickness product of the

thin Iossy layer that may be present.

The equivalent circuit for Z(r) is the network shown in

Fig. 3. The general spatially dispersive form of the sheath

transfer impedance ZT can be employed here. An ap-

proximate I’-dependent form [4], [5] appropriate for the

present analysis is

ZT = Z. + ~,r2

where

at=2Zo(k2+ k:)-’ coszi//

and Z.= iaLT where L= is the static sheath transfer induc-

tance, and + is the braid weave angle. Note that a,

accounts for the spatial dispersion of the sheath transfer

impedance.

The proper mode equation for our problem is obtained

by using (4) in (l). Normally, the numerical solution for

the complex propagation constants r for the various

modes of the structure are obtained by employing an

iterative procedure for locating complex roots [3], [5].

However, here we take a different approach and we use

an iterative solution of (1) only for purposes of compari-

son.

111. QUASI-STATIC MODE EQUATION

Solution of (1) for the modal propagation constants can

be simplified if some quasi-static approximations are in-

voked. Specifically, we assume that Iy4/ yo12>>1 and that

Ivao/<< 1. In fact, using a previous result of Wait [6] and

small argument approximations for the modified Bessel

functions, we can represent (2) and (3) by

s% ~ ; (1 – cos2rn@o)
m=l

(5)

and

where
(4)

r =po(po+ c)/a~.
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Note that both S and Z, are independent of r with this

approximation, If we now use

~ ~cosnx= -~ln[l–2acosx+a2], fora’<1
~=1 n

given by Wheelon [7] in (5), we find that (1) becomes

021nll+~(Z (17)+ Ze)=0 (7)

where

l?=2pOsin@Oc-1( 1-r)(l-2rcos@O+ r2)-*’2

and

N= 21ry0/TJ0.

After considerable algebraic manipulation, (7) becomes

a cubic equation of the form

d3(r2)3 + ~2(r2)2 + u1(r2) + ~0 = o (8)

where

a3 = q2(lnl? )/ZL (9)

a2=Nq2–sllnR+ [(y&2- ql)lnR+NZ,q2]/ZL (10)

al =N(Z,S1 +ql)+(y~l–so)hl?

+ [(y~ql– qo)lnl?+ NZgql]/ZL (11)

ao= N(Z.SO+ qO)+ y&olnll +qo(y#nll+Nz.)/zL (12)

and

qo= (k%’ – zi)(kjYc – 2.) – k:aczo

ql = (ac – at)(k%’ – Zi) + a’(k:ac – Zo) – ac(zo+ k:a,)

q~ = Cl’(ac – a,) – Cl[ac

and

so= Zi + Zo– k’s’ s, = at —a’.

Now (8) is a cubic equation and it has three roots which

can be solved for algebraically. Two of these roots can be

identified as the propagation constants of the well-known

monofilar and bifilar modes. But, in addition, there is a

third mode which we will refer to as the jacket mode since

it is found that in this mode, the current and return

current flows primarily in the braided sheath and the 10SSY

film layer, respectively, and that the other currents are

negligible. Examination of (9) reveals that in the absence

of the outer lossy film (ZL~oc), a3 vanishes, and (8)
reduces to a quadratic equation in 1’2, Consequently, there

are now only two solutions, As one would expect, the

jacket mode has disappeared, leaving only the monofilar

and bifilar modes.

These results are not unexpected. In the general case,

we have four axial conductors (the tunnel wall and floor,

the cable’s inner conductor, the braided sheath, and the

lossy film layer). Thus, at sufficiently low frequencies,

there will be three TEM modes [8]. But, of course, in the

absence of the lossy film, there remain only three conduc-

tors and thus only two TEM modes would exist in this

low frequency limit. When ohmic losses in these conduc-

tors are considered, we still expect three (or two, if ud= O)

dominant modes provided the tunnel cross section is small

compared with the free space wavelength Ao.

IV. CHARACTERISTIC IMPEDANCES FOR

MULTICONDUCTOR TRANSMISSION LINE

Because the dominant low-frequency modes of this

system behave like TEM transmission-line modes, it is

useful to treat the problem as a multiconductor transmis-

sion line using transmission-line concepts. Such an ap-

proach proves useful, for example, in considering the

mode conversion problem resulting from the presence of

axial nonuniforrnities in the cable or tunnel. Thus we need

to derive the characteristic impedance of each line for

each quasi-TEM mode. Specifically, we define

P-L v, ~
K~=— K,=— Ki=— (13)

~Le-rz ‘ I,#-r. ‘ Iie-~z

as the impedance associated with the lossy film, the

braided sheath, and inner conductor, respectively. The

voltages V=, V., and Vi are defined by

J“.= -!JpO-c~p(@=@o)43

~= V=+ ~p,dp’

1
b~.=v,+ EP)dp’ (14)

a

and are the voltages of the lossy film, the braid, and the

inner conductor, respectively, with reference to the tunnel
floor, Similarly, IL, 1,, and Ii are the currents in each

conductor (see Fig. 3).

It is not difficult to show that within the quasi-static

approximation, ,?3Pcan be determined from

Ep = a 2u/apaZ = –rau/ap (15)

where U has the form

1‘[cosw?(@#o)-COStn(@ +@o)] (16)

and

PCT= [P;+ P2–%%J Cos (@$o)]l’2

P{= [P; +P2–2PP13 Cos (0+*0)]”2

lt=lL+l, +li.

Similarly, we find that the radial electric field within the

cable using these quasi-static approximations is given by

1
F]ie-r’
2riacp’ ‘

a<p’<b

EP,w
I’I~e-rz

(17)

2rit0cCp’ ‘
b<p’<c

where zb= 1, + Ii. Combining (13)-(17) and using the
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summation form used earlier, we obtain

()l+p+q rln~
K~ =

9 N

497

‘=’[(’+:+q)~+(+)acl ’18)
and

[

lnR
K,=r (l+p+q)~+(~ +~)ac+a’ 1

where the current ratios p and q are defined by

z’(r) + z,
p=:=

1 z,(r)

and

‘b(r) + ‘c (r)
+ =(l+P) ‘z .

z L

(19)

The characteristic impedances defined by (18) are de-

pendent upon I’ and consequently they assume different

values for each mode. Thus we have KLo), K,o), and Kio)

corresponding to the propagation constant of each mode

(17,) forj = 1,2,3. In the special case when there is no lossy

film (ad= O), lL vanishes, and we consider only the two

characteristic impedances K~o) and K,(J) for j = 1,2.

V, SOME NUMERICAL I@SULTS

We now present some examples of numerical results for

typical configurations of the geometry shown in Figs. 1

and 2. In all examples that follow, we consider a tunnel

with radius a.= 2m and rock conductivity and permittiv-

ity of U.= 10–2 mhos/m and c,= 10EO, respectively. The

dimensions of the cable are as follows: a= 1.5 mm, b= 10

mm, and c = 11.5 mm. The permittivities of the cable

insulation and jacket are given by c = 2.5c0 and CC=3.0E0,

which are typical values. Finally, in all cases, the cable is

located at @O=45°, and the cable’s braid is woven at the

angle ~ =450.

In order to ascertain the accuracy of the quasi-static

mode equation (7), we first consider a comparison of

results computed using this approximation to results com-

puted from (1) directly using iterative techniques. Fig. 4

compares the attenuation rates of the monofilar mode

over the frequency range 0.2 to 100 MHz for various

values of the cable’s radial position PO. (Attenuation rate

in dB/km = 8686. Re (17).) Here we take the braid transfer

inductance &. to be 40 nH/m which corresponds to the

FONT cable [9], UW= 5.7 X 107 mhos/m, and rJd=O. A

similar comparison for the bifilar mode shows the two

solutions to be virtually indistinguishable over this range

of frequencies. In addition, if a nonzero d is introduced,

a comparison of attenuation rate of the jacket mode also

shows the two solutions to be virtually the same. These

comparisons clearly demonstrate the utility of the quasi-

static mode equation for typical tunnel parameters at

radio frequencies. The remaining examples given here

have been computed solely using the quasi-static ap-
proximation that is much more economic.

~m
2

FREQuENCY (MHz)

Fig. 4. Attenuation rate of the monofilar mode versus frequency for
various valuses of (po/ so). With quasi-static approximation:-.

Without quasi-static approximation: -------

In our next example, we again consider the case when
LT = 40 nH/m but allow po, UW,and ud to assume various

values. These results are shown in Fig. 5(a) and (b). It is

found that the monofilar mode is essentially independent

of the inner conductor’s conductivity (rJW) whereas the

bifilar mode is essentially independent of the cable posi-

tion within the tunnel. This is in agreement with similar

results obtained for a coaxial cable in a circular tunnel [3].

It is interesting to note, however, that the attenuation

rates for the monofilar mode (Fig. 5(a)) are significantly

lower than those given [3] for similar parameters in a

circular tunnel. This is not unexpected since, in the semi-

circular tunnel, a portion of the return current for the

monofilar mode flows in the perfectly conducting tunnel

floor and thus suffers less attenuation. On the other hand,

there is virtually no difference between the bifilar modes,

which are relatively insensitive to the environment outside

the cable.

Now we turn our attention to the jacket mode. Fig. 6

shows the attenuation rate of this mode as a function of

frequency for various values of & and ad. The most

immediate observation to be made is that the attenuation

rate for this mode is orders of magnitude higher than that

of the other two modes. It is also observed that the

attenuation is approximately proportional to (ti/ud)1f2.

Another quantity of interest is the normalized phase

defined by Im (r)/ko which is inversely proportional to

the phase velocity with which the mode propagates along

the tunnel. Some values of the normalized phase are given

in Table I for the monofilar and bifilar modes. Here

LT= 2 nH/m, cra= 5.7 X 107 mhos/m, and od=O. We note

that for the monofilar mode, the normalized phase is

slightly larger than unity when the cable–tunnel wall

separation is large, but increases rapidly as the cable

approaches the tunnel wall. On the other hand, the nor-

malized phase of the bifilar mode is essentially indepen-

dent of this separation and is slightly greater than k/k.=

(C/ Eo)l/2 = 1.581. This suggests the interesting possibility

of adjusting the dielectric constant of the cable insulation
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Fig. 5. Attenuation rate versus frequency for (a) monofilar mode,

(b) bifilar mode. ud= 0:—. d= 10–3mhos:— - —. od= 10’2
mhos:-. ud=lO–l I!lhOS:-------

and the cable–tunnel wall separation such that the two

modes will propagate with the same phase velocity.

Finally, we consider the normalized phase for the jacket

mode as given in Table II for three values of ud. Here

LT = 2 nH/m, and the values given are essentially inde-

pendent of the other parameters. We see that, for typical

values of the conductivity-thickness product of the lossy
film, the normalized phase is much larger than one, and

consequently, the mode propagates very slowly. It should

be pointed out that, like this mode’s attenuation rate, the

phase is essentially proportional to (ti/@l/2.

VI. CONCLUDING REMARKS

We have obtained a remarkably simple description of

the dominant transmission modes for a leaky coaxial

cable located in a uniform straight tunnel with a semicir-

cular cross section. The formulation is facilitated by the

assumption that the floor of the tunnel, including the

effect of any metallic rails, is represented adequately by a

7, JULY 1978

,03L—LLUJJ
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Fig. 6. Attenuation rate of jacket mode versus frequency for various

values of ud. L== 40 nH/m:—. LT=2nH/m:-------
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TABLE I

NORMALIZEDPHASEIm (r)/ko

—

P
J?. , j

“0

1.058

1.057

1.056

1.055

1.051

1.047

1.040

1.030

1.o27

M.n.f il..

flo .9
‘O
1.251

1.268

1.144

1.238

1.225

1.208

1.176

1.103

1.054

TABLE II

p
-2= .98
‘0

1.685

1.680

1.674

1.665

1, 644

1,617

1.566

1.444

1.332

Bif,lar

P. “–
— r.

=’
o

1.604

1.59b

1.593

1.590

1.587

1.586

1.585

1.5s5

1.584

NORMALIZEDPHASEIm (r)/kO

‘1

1.
f ad = 10’3

.2 759.7

.5 480.5

1.0 339.8

2.0 240.2

5.0 151.9

10.0 107.4

20,0 75.98

50.0 48.06

100.0 34.00

Jacket Mode

ad . 10–2

240.2

151.9

107.4

75.98

4S.06

34.00

24. o6

15.25

10.82 J
ad = 10-1

75.98

48. o6

34.00

24.06

15.25

10.82

7.699

4.967

3.630

perfectly conducting ground plane. This allows us to de-

fine characteristic irn~edance; of the transmission modes

in a meaningful fashion. In a subsequent study, we shall

consider the application of these results to the case where

the cable and/or the tunnel environment undergoes a

lateral variation such as an abrupt modification of the

effective series or shunt impedance.
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Electromagnetic Transmission Through a Filled
Slit in a Conducting Plane of Finite

Thickness, TE Case
DAVID T. AUCKLAND, STUDENT MEMBER, IEEE, AND ROGER F. BARRINGTON, FELLOW, IEEE

,4bstract-A solution is developed for computing the transmission char-

acteristics of a sfit in a conducting screen of finite thickoess placed

between two different media. The sfit may be filled with Iussy materfaf

whfle the two regform on either side of the screen are assumed Iussks. A
magnetfc line sorrrce excitation is used @E case) which is parallel to the

axis of the sfitd The equivalence principle is invoked to replace tbe two sfit

faces by eqoivafent magnetic correnit sheets on perfect electric conductors.

Two coupled integraf equations containing the magnetic currents as on-

knowns are then obtained aod solved for by the method of momenta.

Pukes are used for the expansion and testing fonctions. Quantities com-

puted are equivalent magnetic currents, the transmission coefficient the

gain pattern, and the normalized far field pattero.

L lNTRODUCTION

T HE PROBLEM of diffraction of plane waves through

a slit in a perfect electric conductor of finite thickness

has been studied by several investigators [ 1]–[5]. The most

extensive investigation was that of Lehman [1], who used

the analytic properties of finite Fourier transforms. The

solution of Kashyap and Hamid [2] used a Wiener–Hopf

and generalized matrix technique. Both of these solutions

were done for the TM case (incident electric field parallel

to slit axis). The solutions of Hongo [3] and of Neerhoff

and Mur [4], were obtained by a numerical solution of

coupled integral equations and were done for the TE case.

A similar solution for the TM case was obtained by

Wirgin [5]. In this paper, we use the method of moments

to solve coupled integral equations -similar in form to

those derived in [4].
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This paper utilizes the generalized network formulation

of coupling through apertures developed in [6] and [7] and

extends these results to three regions coupled by two

apertures. To accomplish this the equivalence principle is

used to replace both faces of the slit by perfect conduc-

tors, each of which carry magnetic current sheets on both

sides. The original problem is now broken up into three

regions which are coupled by the postulated magnetic

current sheets. The two half-space regions are loss free

with arbitrary p and c and the medium in the slit is

assumed Iossy with arbitrary complex p and e.

Continuity of the tangential magnetic field is used to

derive two coupled operator equations involving the

equivalent magnetic currents as unknowns. These equa-

tions are put into matrix form using the method of mo-

ments, and solved by using standard matrix methods. The

result can be interpreted in terms of a combination of

“admittance matrices” computed separately for each re-

gion. This gives rise to a network interpretation of the

problem which treats the unknown magnetic currents as

port voltages and the excitation as port currents.

II. PROBLEM FORMULATION

The original problem configuration is shown in IFig. 1.

It consists of a perfect electric conductor of thickness d

separating two regions a and c which may have different

electrical properties. Coupling between the two regions

occurs through a slit of width w filled with an arbitrarily
Iossy medium. The conductor is infinite in the z and y

directions. The problem consists of three regions sep-

arated by two boundaries (the slit faces). Using the equiv-

alence principle, the three regions can be separated by
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